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Abstract  

In recent years, message-passing parallel codes have rallied around using the message 
passing interface (MPI). The parallelism in these codes is most often explicit; the 
developer must instrument the source code with calls to an optimized communications 
runtime library. MPI has been widely used for developing efficient and portable parallel 
programs, in particular for distributed memory multiprocessors and workstation/personal 
computer (PC) clusters, although its use in shared memory systems has been equally 
effective. This report presents algorithm for building a program flow graph 
representation of an MPI program. As an extension of the control flow graph 
representation of sequential codes, this representation provides a basis for important 
program analyses useful in software testing, debugging tools, and code optimization. 
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1.    Introduction 

The message passing interface (MPI) is a library for writing distributed memory parallel 

programs that conform to a vendor-independent standard, thus enabling parallel programs 

that are portable to many platforms [1]. A significant number of large applications have 

been written in MPI, and it has been demonstrated that message passing programs written 

in MPI can be both efficient and portable to various parallel environments and architectures. 

However, MPI is often described as being analogous to assembly language programming due 

to the low-level details required of the programmer. The step from a sequential code to a 

correct, and not necessarily efficient, message passing parallel program is a challenging and 

time-consuming one. Few sophisticated program analysis, testing, or debugging tools exist 

to aid the programmer in this daunting task, as the design of these tools is complicated by 

concurrency, nondeterministic execution, data distribution, and communication. 

Optimization of message passing programs has focused on aggregating communication, 

moving communication statements to hide communication latency by overlapping communi- 

cation and computation, and reducing communication latency and unnecessary synchroniza- 

tion. However, techniques such as data flow analysis, classic optimization, data flow testing, 

and program slicing have not been addressed in the context of MPI programs. 

Data flow analysis techniques for shared memory programs [2, 3], as well as data flow 

and dependence analysis for concurrent Ada programs [4] and distributed applications (i.e., 

those not of the form single program-multiple data [SPMD] [5, 6]), have been developed. 

Dynamic slicing methods for different models of concurrent programs have been developed 

for distributed programs with Ada-type rendezvous communication [7, 8], synchronous mes- 

sage passing distributed programs [9], and shared memory parallel programs [10]. Static 

slicing methods for concurrent programs [5, 11, 12] have focused on shared memory parallel 

programs with parallel sections and object-oriented features. 



2.    MPI Program Analysis 

MPI programs present a different model of concurrent programming than these models. 

MPI programs are written in the SPMD style, in which each process executes the same 

program with unique data. Within these programs, special conditional statements based on 

the unique process identifiers allow for selectively executing various code segments. Although 

it is now possible in MPI-2 to create a multiple instruction-multiple data (MIMD) application 

by using a dynamic task creation feature, it is preferable to create a static SPMD MPI 

program, primarily for performance reasons. All processes are started as the program begins. 

Each process has its own local memory address space; there are no shared global variables 

among processes. All communication is performed through library calls to MPI routines. 

This report describes efforts to develop a program representation for MPI programs that 

will enable static program analysis for software testing, debugging, and compiler optimiza- 

tion. All of these techniques require robust program understanding, achieved through good 

intertask data flow analysis and data dependency analysis. Calls to communication libraries 

in MPI explicity parallel code complicates all of these factors. However, these issues must 

be addressed to achieve the most optimized code possible. For example, automatic dif- 

ferentiation of functions containing message passing constructs is often less efficient than 

hand-coded versions. By providing a representation that will allow the compiler to perform 

a better analysis (dependence, control flow, data flow, etc.) in the presence of messages, the 

performance gap should shrink substantially [13]. 

Developing this representation for MPI programs introduces several challenges. First, 

the SPMD nature of the codes implies that the program representation for each process is 

not necessarily distinct. Rather, processes execute the same program, with segments to be 

executed by a subset of the processes designated by conditional statements. All processes 

execute the code that resides outside of these special conditionals. This behavior needs to 

be modeled correctly in the program representation and taken into account during static 



program analysis. Second, programmers often exploit the rich set of collective communi- 

cation routines in the MPI library, in addition to point-to-point communication. One way 

of handling programs with collective communication is translating them into a sequence of 

point-to-point communication calls for program analysis. However, one intended use of the 

representation is to display information about the program flow to the programmer through 

a graphical user interface (GUI); thus, the program representation should be presented to 

the programmer in terms of the original MPI program. Additionally, collective communi- 

cation, such as scatter and gather operations, involve different sections of an array being 

partitioned or gathered to the various processes, respectively. It would be most useful to 

have the data flow information reflect this sectioning of the array. 

The remainder of this report presents the results of a characterization study of a set of 

MPI programs that helped guide the design of these techniques, as well as an algorithm for 

constructing an MPI program flow graph. 

3.    Characterization Study 

While the goal is to build a suite of "real-world" codes, finding stable MPI production 

codes is a common problem being addressed by consortiums and vendors. MPI usage was 

statically analyzed in the Numerical Aerospace Simulation (NAS) Parallel Benchmark suite 

and five other major codes listed in Table 1. The NAS codes include various kernel and ap- 

plication MPI benchmarks. ST3D from Washington University is a numerical relativity code 

that solves the full Einstein equations in three dimensions. CRUNCH3D from the Naval Re- 

search Laboratory addresses dissipative, compressible magnetohydrodynamics using three- 

dimensional (3-D) Fourier collocation. Znsflow from the U.S. Army Research Laboratory 

(ARL) is a computational fluid dynamics code that solves the unsteady Reynolds averaged 

Navier-Stokes equations and can be targeted to various projects of interest. OVERFLOW 

and BATSRUS come from NASA. OVERFLOW computes numerical solutions of the com- 
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12 
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ST3D (Einstein) 15512 22 2 10 10 10 
NRL CRUNCH3D 3207 48 11 6 6 6 
ARL Znsflow 16744 58 17 19 0 19 
NASA OVERFLOW 22017 457 40 374 «318 «318 
NASA BATSRUS 16324 181 32 80 «40 «40 

Table 1: Characteristics of MPI Usage in Parallel Programs 

pressible Navier-Stokes equations by using a finite volume discretization in space and implicit 

time steps. BATSRUS is a magnetohydrodynamics code used for applications such as solar 

modeling. Some of the OVERFLOW and BATSRUS metrics are approximated based on a 

small sample from the code. This was necessary due to the code complexity, size, and lack 

of data flow analysis. A fully automated system with data flow analysis should provide more 

accurate results. 

Several concluding observations were possible after a cursory examination of these pro- 

grams. In all of the codes except one, the number of source lines related to MPI communi- 

cations is less than 2% of the total number of lines of code (in most cases it is far less than 

2%). The "MPI Calls" column in Table 1 gives a count of all MPI calls found in the code. 

The "Total Collective" column lists the number of MPI collective communications. Data 

pertaining to MPI point-to-point communication was further broken down. The "Total" 

column gives the number of sends and receives. 

Special conditional statements (e.g., if [myrank == 0]) involving the process identifier 

are present, but not common. These statements are usually indicative of manager-worker 

style parallelism. The column "In Special Branches" shows the number of MPI sends and 

receives found in these branches. Many of these codes work on grid-based data, which seems 



to naturally favor a data parallel approach to parallelism. As message passing codes, however, 

many of these programs rely upon initialization routines to compute arrays or scalars, such 

as north, south, etc., to hold information about neighboring processes and domains. Source 

and destination fields in the communication calls contain expressions using precomputed 

arrays, scalars, constants, and in some cases, the process identifier. MPI wildcards, such as 

MPI_ANY_TAG or MPI_ANY_SOURCE, are not common. Some codes use nested conditionals or 

loop constructs to further refine execution paths and interprocess communication. 

Ultimately, while these programming styles make flow graph construction more difficult, 

they do not necessarily preclude it in most cases. Many of the scalars and arrays are defined 

with some reference to a unique process identifier. A static backward slice and variable 

substitution within the local process's flow graph can be used to reformulate these expressions 

in terms of the process identifier. Constant folding used in source and destination fields would 

also assist in the process. 

Many point-to-point communication statements can be trivially matched. The number is 

given in the "Trivially Matched" column in Table 1. In these cases, a simple analysis of the 

communicator, type, and tag fields is enough to explicitly match communication statements. 

4.    MPI Program Flow Graph 

Since each process in an MPI program has local space allocated for each of the declared 

variables in the program, and communication occurs only through matching MPI communi- 

cation calls, data flow local to a given process between communication points in that process 

is not affected (as a side effect) by the data flow within other processes. The data flow 

within a given process is only affected by other processes at communication points. In point- 

to-point communication, a message sent by a particular send operation will be received by 

another process only through a receive operation executed by the other process.   Specifi- 



cally, a message can be received by a particular receive operation only if (1) it is addressed 

to the receiving process by the sender, (2) the send and receive have matching communi- 

cator fields, (3) the sender field of the receive is either MPI_ANY_SOURCE, or it matches the 

sender's process id, and (4) the tag fields of the send and receive match, or the tag field 

of the receive is MPI_ANY_TAG. In collective communication, all processes in the designated 

communicator are involved in the communication. Although multiple messages sent from 

one process to another process are guaranteed to arrive in the order they were sent, there 

are no assumptions made on the arrival order of messages from two different sources to the 

same destination. When a message receive specifies MPI_ANY_SOURCE as the expected sender, 

the originator of the message will be indeterminate at static analysis time; otherwise, the 

expected sender is specified, and communication is deterministic. Such indeterminacy is 

conservatively represented in this program representation. 

A control flow graph (CFG) representation for a sequential program P is a directed 

graph G = (N,E,S,e), where each node n € N represents a basic block of instructions, 

each edge n ->• m e E represents a potential flow of control from node n to node m, and 

there is a unique start node s and a unique exit node e. A path in G is a sequence of nodes 

(nx,^, ...nk), where n{ -> ni+1 for all 1 < i < k. It is assumed that every path in the CFG 

is a viable execution order of program P. 

An MPI-CFG extends the CFG with communication edges and isolates each communica- 

tion statement into its own separate basic block, represented by a single node in the graph. 

These nodes are called communication nodes. 

While point-to-point communication can be easily represented by a single communica- 

tion edge, collective communications have distinct semantics that result in different data flow 

across processes. For example, a broadcast will result in every process receiving the same 

value and storing it into the same local variable, whereas a scatter will result in each process 

receiving a subset of a set of values sent from the root process to distribute or partition the 

data stored in a single array among the processes.  The representations of these communi- 



cation statements were developed with the goal that each communication statement should 

have a unique representation that reflects its semantics. 

Lastly, the control flow edges of the MPI-CFG are annotated with a value that reflects 

static information about the number, and possibly the process identifiers (if available) of the 

processes that could execute along that edge. The value will be one of the following four: 

(1) < c >, indicating the known process id c of the only process that will execute that 

edge, 

(2) < single >, indicating that statically one can prove that only a single process will 

execute this edge, but one cannot determine the process id, 

(3) < unknown >, indicating that it could be one or more processes executing this edge, 

or 

(4) < multiple >, indicating that definitely more than one process will execute this code 

if there is more than one executing process. 

A predicate annotation (e.g., myproc < n) is also maintained if it is available and possible 

to identify. This information allows the communication edge addition step and other static 

program analyses to utilize the information about process ids. 

Due to space constraints and the large size of most interesting MPI programs, it is 

preferable to define a condensed MPI-CFG as an MPI-CFG in which the nodes representing 

computation blocks between two communication nodes are collapsed into a single represen- 

tative computation node. This structure is meant for presentation purposes only. Program 

analysis is to be performed over the MPI-CFG, not the condensed MPI-CFG. The MPI-CFG 

is illustrated in Figure 1. Figure 1(a) gives the code segment for an SPMD-style MPI pro- 

gram segment that performs a "cascading" style of communication, with processor 0 sending 

to 1, 1 to 2, etc. The MPI-CFG is shown in Figure 1(b). Control flow edges are indicated 



if (myid.eq.O) then 
call mpi_send(flag,l,MPLJNTEGER,i,tag, 

MPI_COMM_WORLD,ierr) 
end if 
do np=l,nprocs-l 

if (myid.eq.np) then 
call mpi_recv(flag,l,MPIJ:NTEGER,np-l, 

tag ,MPIJC0MM_W0RLD , status, ierr) 
if   (myid.ne.(nprocs-1)) then 

call mpi_send(flag,l,MPI_INTEGER, 
np+1, tag, MPI.COMM.WORLD, ierr) 

endif 
endif 

enddo 

(a) MPI Code Segment cascade. 
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(b) Corresponding MPI-CFG. 

Figure 1: An Example MPI-CFG. 

by solid lines, while communication edges are shown as dashed lines. Communication edges 

are labeled with the variables that are involved in the interprocess communication. The 

conditional < myid == 0 > is an example of a special conditional statement indicating that 

the left branch is to be executed only by process 0, while the rest of the processes should 

execute the right branch. 



5.    Construction Algorithm 

5.1 Basic Approach. The MPI-CFG construction algorithm is summarized in Figure 2. 

The first step is to create the underlying CFG by using a slight modification to the usual al- 

gorithm for CFG construction, which isolates communication statements as separate nodes. 

Each process's CFG is represented by some subgraph of this graph, where different pro- 

cesses typically have subgraphs that overlap one another. An initial pass of edge annotation, 

based on the relational operator of the special conditionals, will indicate program segments 

that are executed by one process vs. possibly multiple processes. Many parallel program- 

mers program in the manager-worker style of programming, where the special conditionals 

if [myrank == 0] will often be an equality test against a constant. This information is used 

in the constant propagation phase. Traditional constant propagation can be applied to CFG 

representation of an SPMD program; however, it will be overly conservative in handling con- 

stants at join points from branches taken by different processes. More sophisticated constant 

propagation that recognizes constants with respect to particular processes would result in 

more precise information per process. Propagating constants helps to eliminate symbolic in- 

formation in the parameters of communication statements, as well as the information known 

about the expressions in special conditionals. 

The last step is to conservatively add communication edges. Because the same code 

segment may represent multiple processes, it is possible for a communication that occurs at 

runtime to have no associated communication edges, only a communication node. Communi- 

cation edges are added according to the kind of communication, variables in particular fields 

of the communication call, any statically determined information about constants and the 

annotations on control flow edges, and the matching rules for communication statements. 

Sometimes the communication is ambiguous because of unknown values for variables, or 

wildcards in the source or tag fields. In these situations, an edge is added for any potential 

matching communication. In the MPI programs examined, there are very few communica- 



Algorithm: MPI-CFG Construction. 
Input: MPI program P. 

Output: MPI-CFG representation of P. 

begin 

Treating MPI calls as regular function calls, 

Construct the CFG representation P-CFG of P; 

Using the parameter of MPI_Comm_rank, 
Identify special conditionals that 

indicate separate process control flow; 
Perform initial annotation of edges based on 

the expression operator in special 

conditionals; 

Using annotations, perform modified constant 

propagation over P-CFG; 

Perform final annotation of edges using new 

information at special conditionals; 

At each MPI communication statement, 

Use constants, CFG slices and MPI matching 

rules to identify potential matching 
communication; 

Conservatively add communication edges to 
P-CFG; 

end. 

Figure 2: MPI-CFG Construction Algorithm. 

tions that would cause additional edges to be added due to lack of information at analysis 

time. 

The most challenging aspect of finding the potentially matching communication state- 

ments is identifying the source and destination processes. The source and destination fields 

of communication statements can be categorized as being (1) a constant, (2) an expression 

involving the process identifier, or (3) an expression not containing the process identifier. 

First, a traditional backward CFG slicing is performed (without communication edges) to 

reformulate expressions that are derived from the process identifier, but do not explicitly 

contain the process identifier. Then, in cases (1) and (3), the annotations on MPI-CFG 

edges are used to refine the set of potentially matching communications. In case (2), vari- 

able substitution is used in the expression functions of these fields to determine whether the 

10 



source and destination expressions of the receive and send operations, respectively, can be 

equal. 

5.2 Extensions. Several enhanced control flow and data flow techniques are being consid- 

ered. For example, several codes that were analyzed employ a programming style in which 

many mpi_isend statements are explicitly written. However, there is only one matching 

mpi_irecv statement, which is located in a function. This function is called repeatedly with 

the required parameters to match-the various sends. Interprocedural analysis, or simply 

function inlining, will provide more information for static analysis. 

Furthermore, approaches that may assist in providing more precise information for loop- 

nested communications are being investigated. Loop peeling, a technique useful in scalar 

replacement memory hierarchy optimizations, may prove beneficial [14]. The basic approach 

is to "peel" k iterations from the beginning of a loop and replace them with copies of the 

body and the associated increment and test code for the loop index. Where there are loop- 

nested communications in which the tag or source and destination fields are based on the 

loop index variable(s), peeling can be useful in restructuring the MPI-CFG to allow for better 

edge annotations. This technique should also be useful in removing communications edges 

that point into a loop body, thus simplifying the static slice. 

6.    Current Directions 

The process of program flow graph construction is curently being implemented within 

the Stanford University Intermediate Format (SUIF) compiler infrastructure [15]. More 

precise constant propagation analysis is also being investigated. Studying various existing 

MPI codes revealed the need for a more robust constant folding technique. This should 

provide for better point-to-point communication matching and should allow for removing 

communication edges that are currently required to be conservative. Of particular interest is 

11 



the extension of the program dependence graph (PDG) representation for SPMD programs. 

The program dependence graph is a representation that succinctly represents both control 

and data flow in a program. 

12 
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